Sovkrim - Компьютер шаг за шагом

Sovkrim - Компьютер шаг за шагом

» » Герметическое воздействие токов короткого замыкания. Динамическое действие токов короткого замыкания

Герметическое воздействие токов короткого замыкания. Динамическое действие токов короткого замыкания

Токи к. з. вызывают дополнительный нагрев токоведущих частей электрических аппаратов, шин и жил электрических кабелей.

Длительность т. к. з. определяется временем, необходимым для отключения цепи защитными устройствами. Для того чтобы повреждения от термического действия т. к. з. были наименьшими, стремятся отключить к. з. возможно быстрее (время срабатывания защиты не должно превышать 0,1 — 1 с).

Вследствие кратковременности к. з. считают, что все выделяемое тепло идет на нагрев проводников, в то время как при нагреве проводника током нагрузки часть выделяющегося тепла рассеивается в окружающей среде.

Для упрощения расчетов по вычислению количества тепла, выделяемого при к. з., условно принимают, что нагревание проводника производится током, неизменным по величине и равным установившемуся значению периодической слагающей т. к. з. При этом действительное время действия т. к. з. заменяют так называемым фиктивным временем t ф, в течение которого установившийся ток I ∞ выделит такое же количество тепла, как и действительный изменяющийся т. к. з.

После принятых допущений количество теплоты Q к, кал, выделяющееся по закону Джоуля-Ленца в проводнике с сопротивлением, равным R, при коротком замыкании составит:

Q к = 0,24 I 2 ∞ R tф

где t ф — фиктивное время действия тока к. з., с.

Температура нагреваемого устройства

υ= Q к /G c , (II-33)

где ϑ —°С, если Q k , ккал; G — вес, кг; с —удельная теплоемкость, ккал/(кгХ°С).

Для достижения динамической и термической стойкости оборудования прибегают в случае необходимости к ограничению величины т. к. з. путем включения реакторов, к уменьшению времени к. з.

Реактор представляет собой катушку с большим индуктивным и малым активным сопротивлением. Реакторы надежно изолируются от заземленных частей.

Реакторы выполняют без стальных сердечников, что сокращает потери электроэнергии в них, уменьшает их вес и стоимость; кроме того, при наличии стали их индуктивность зависела бы от величины тока, что приводило бы к меньшему ограничению т. к. з.

Номинальные параметры аппаратуры (ток, напряжение, мощность отключения) должны соответствовать вычислительным максимальным расчетным величинам в рабочем режиме и при к. з.

Номинальные данные электрической установки — совокупность суммарных параметров, характеризующих работу электроустановки в номинальном режиме.

Для предотвращения коротких замыканий и уменьшения их последствий необходимо устранить причины, вызывающие их, правильно проектировать, монтировать и эксплуатировать электроустановки, три этом предусматривать, чтобы все элементы электроустановок (аппараты, провода и т. п.) обладали динамической и термической стойкостью в условиях короткого замыкания.

Выбирать тажие выключатели мощности, которые под действием защиты быстро и надежно отключают поврежденные элементы оборудования или участок сети. Для этого надо уметь рассчитывать т. к. з. и определять вызванные ими снижения напряжения в узлах сети.

Контрольные вопросы

  1. Каковы причины коротких замыканий?
  2. К каким последствиям может привести короткое замыкание?
  3. Что называется коротким замыканием?
  4. Какие виды коротких замыканий вам известны?
  5. При каком коротком замыкании возникают наибольшие токи?
  6. Как определяются полные сопротивления цепи короткого замыкания?
  7. Какие принимают допущения при расчетах токов короткого замыкания?
  8. Для чего производится расчет токов короткого замыкания?
  9. В чем заключается процесс короткого замыкания?
  10. Как производится расчет токов короткого замыкания?
  11. В чем заключаются особенности расчета токов короткого замыкания в сетях напряжением до 1000 В?
  12. В чем разница расчетов токов короткого замыкания в именованных и относительных единицах?
  13. В чем проявляются действия токов короткого замыкания?
  14. Как определяются электродинамические и термические напряжения?
  15. Какие меры обеспечивают термическую стойкость оборудования?
  16. Какие параметры аппаратуры учитываются при расчете токов короткого замыкания?

«Электроснабжение строительно-монтажных работ», Г.Н. Глушков

Однако для более точного расчета полное сопротивление цепи к. з. следует определять не путем арифметического сложения модулей полных сопротивлений участков этой цепи (II-5), а как в выражении на рисунке: Пример расчета. По расчетной схеме, приведенной на рис. II-4; определение сопротивлений элементов схемы — на рис. II-6. Сопротивления силового трансформатора ТМ 630/10, приведенные к напряжению 0,4…


iy = √2Ку Iк, где Ку — ударный коэффициент определяется из графика Ку = f (X/R) Расчетная схема для X/R = 24/50 = 0,48. Из графика имеем Ку =1 iу = 1,41*1*4,15 = 5,9 кА. Наибольший действующий ток к. з., по которому проверяется аппаратура на динамическую стойкость за время первого периода к. з., составляет: Iу=…

Сопротивление системы Хс определяем по формуле Хc=Uc//√3I(30) Сопротивление воздушной линии: индуктивное Хл =x0l; активное Rл = r0l где х0, r0 — удельные индуктивное и активное сопротивления линии, Ом/км (см. справочник). l — длина линии, км. Индуктивное сопротивление обмоток силового трансформатора: Хт = Uk%U1N/√3I1N100%. Результирующее индуктивное сопротивление Хрез — хс+хл+хт Если Хрез >1/3rл, то активным сопротивлением…

Виды замыканий в электрических сетях

Электрические сети характеризуются нормальным, ненормальным и аварийным режимами работы. При нормальном режиме по всем элементам сети протекают рабочие токи, не превышающие допустимых, электроэнергия передается от источников питания к потребителям с нормальными расчетными потерями напряжения и электроэнергии на всех элементах сети. При ненормальном режиме (например, перегрузке) допускается работа электроустановки в течение определенного времени, после чего должно следовать отключение. Аварийный режим работы характеризуется резким изменением ряда параметров (повышение тока, снижение напряжения) и требует немедленного отключения электроустановки.

Большая часть аварий в электрических сетях вызывается короткими замыканиями (КЗ), основной причиной которых является нарушение изоляции токоведущих частей. Механические повреждения изоляции возникают, например, при повреждении изоляции силовых кабелей во время земляных работ, при падении опор воздушных линий или обрыва проводов. Повреждения изоляции могут иметь место при перенапряжениях, например, при прямых ударах молнии в провода воздушных линий или открытых электроустановок. Короткие замыкания возможны также вследствие перекрытия токоведущих частей птицами и животными или ошибочных действий персонала.

При возникновении КЗ общее электрическое сопротивление электрической системы уменьшается, токи и углы между токами и напряжениями увеличиваются, напряжения в отдельных частях системы снижаются. Токи КЗ могут в десятки, сотни раз превышать рабочие токи элементов электроустановок и достигать десятков тысяч ампер. Наступление аварийного режима КЗ приводит к значительным электродинамическим (механическим) и термическим (тепловым) воздействиям на токоведущие части и электрооборудование.

В трехфазных сетях переменного тока различают пять основных видов коротких замыканий (рис. 4.1): однофазное двухфазное двухфазное на землю трехфазное и трехфазное на землю. Если все виды КЗ принять за 100%,то относительная частота появления замыканий в сети составляет: однофазных -- 65%; двухфазных -- 10%; двухфазных на землю -- 20%; трехфазных и трехфазных на землю -- 5%.

Рис. 4.1.

Однофазные замыкания в системе с заземленной нейтралью возникают при пробое изоляции фазы системы на землю и являются короткими. Под действием напряжения поврежденной фазы (на рис. 4.1 --) протекает ток, который достигает большого значения, так как сопротивление цепи невелико

Напряжение фазы С источника питания, В;

Сопротивление цепи однофазного КЗ, Ом.

Величина однофазного тока при КЗ на шинах генератора в 1,5 раза превышает ток двухфазного КЗ и в 2,5 раза -- трехфазного КЗ. Однако его можно существенно снизить за счет включения в заземление нейтрале N большого активного или индуктивного сопротивления. В результате этого наибольший возможный ток однофазного КЗ не превышает тока трехфазного КЗ.

Однофазные замыкания в системе с изолированной нейтралью не

являются короткими, а значит и аварийными. На рис. 4.2, а показана схема системы с изолированной нейтралью. Каждая фаза системы обладает относительно земли некоторой емкостью, равномерно распределенной по длине линии. Для упрощения на схеме заменяем распределенную емкость фазы, емкостью, сосредоточенной посредине линии. При повреждении изоляции одной из фаз, например Сс, и замыкании ее на землю, через место соединения с землей будет проходить ток, который вернется в сеть через емкости СВ и СА. Емкостные сопротивления между фазами и землей достаточно велики, поэтому ток /, как правило, не превышает нескольких десятков ампер и носит емкостный характер (). Величина зависит от напряжения и протяженности сети, конструктивного выполнения линий (кабельное или воздушное).

а -- схема системы с изолированной нейтралью; б -- векторная диаграмма напряжений системы при однофазном замыкании на землю

Приближенно ток Iс можно определить по формулам: для сетей с воздушными линиями

для сетей с кабельными линиями

U -- линейное напряжение сети, кВ;

l-- длина электрически связанных линий сети данного напряжения, км.

Из векторной диаграммы (рис. 4.2, б) видно, что при замыкании на землю одной фазы напряжение нейтрали повышается относительно земли на величину фазного напряжения, а напряжения двух других фаз относительно земли становятся равными линейным U"А = UAC, U"B = UBC , то есть возрастают в раз (U"A = U"A ;)- Изоляция фаз сети относительно земли должна быть выполнена на линейное напряжение.

Длительная работа сети с замкнутой на землю фазой недопустима, так как в случае повреждения изоляции какой-либо другой фазы относительно земли возникает двухфазное КЗ через землю, сопровождающееся протеканием большого тока, который может вызвать значительное разрушение электрооборудования. Поэтому в сетях с изолированной нейтралью обязательно предусматривают защиту, извещающую персонал о возникновении такого ненормального режима работы. В сетях генераторного напряжения, а также в сетях, к которым подключены электродвигатели напряжением выше 1000 В, при появлении однофазного замыкания в обмотке статора машина должна автоматически отключаться от сети, если ток замыкания на землю превышает 5 А. При токе замыкания, не превышающем 5 А, допускается работа не более 2 ч, по истечении которых машина должна быть отключена. Если установлено, что место замыкания на землю находится не в обмотке статора, по усмотрению ответственного.за электрохозяйство, допускается работа вращающейся машины с замыканием в сети на землю продолжительностью 6 ч. В электрических сетях 6-35 кВ с изолированной нейтралью работа воздушных и кабельных линий электропередачи с замкнутой на землю фазой допускается, но персонал должен приступить к отысканию места повреждения и немедленно устранить повреждение в кратчайший срок.

Более опасно однофазное замыкание на землю через электрическую дугу, так как последняя может повредить электрооборудование. При определенных условиях в месте замыкания на землю может возникнуть так называемая перемежающаяся дуга, которая периодически гаснет и зажигается вновь. Так как сеть обладает индуктивностью, то в моменты гашения и зажигания дуги в индуктивных элементах наводится Э.Д.С., величина которой пропорциональна скорости изменения тока

Скорость изменения тока в момент возникновения и гашения перемежающейся дуги велика, и возникающая э.д.с. может превышать напряжение сети в несколько раз. Эти перенапряжения распространяются на всю электрически связанную сеть, в результате чего возможны пробои изоляции и образование коротких замыканий в частях электроустановки с ослабленной изоляцией.

В электросетях напряжением 6-10 кВ перенапряжения, вызванные перемежающейся электрической дугой, неопасны для изоляции электрооборудования. В противоположность этому в электросетях напряжением 35 кВ и выше перенапряжения, возникающие при образовании перемежающейся дуги, опасны для изоляции. В таких сетях ток замыкания на землю не должен превышать 10 А (10 А), так как при большем токе в месте замыкания на землю, как правило, возникает перемежающаяся электрическая дуга. Сети напряжением 110 кВ с незаземленными нейтралями, как правило, не работают, так как при их значительной протяженности и высоком напряжении, ток в этих сетях всегда превышает 10 А.

Заземление нейтрали приводит к увеличению числа аварийных ситуаций, т. к. замыкания на землю, составляющие 65% от всех видов замыканий, становятся короткими и требуют немедленного отключения поврежденного элемента сети, что является существенным недостатком такой сети. Практика эксплуатации электроустановок напряжением выше 1000 В показывает, что большая часть однофазных замыканий в воздушных электросетях носит кратковременный характер, изоляция в месте замыкания на землю быстро восстанавливается после отключения поврежденного участка, и линия электропередачи может быть немедленно включена в работу с помощью устройств автоматического повторного включения (АПВ). Если замыкание на землю носило временный характер (схлестывание проводов ЛЭП при сильном ветре, перекрытие изоляции птицами и т. д.), то линия включается и питание потребителей восстанавливается в течение нескольких секунд. В противном случае линия отключается вторично.

Достоинством сетей с заземленными нейтралями является то, что при однофазных замыканиях на землю напряжение неповрежденных фаз по отношению к земле не повышается, остается равным фазному. Благодаря этому, за счет облегчения изоляции фаз по

отношению к земле существенно уменьшаются расходы на сооружение таких сетей. Достигаемая экономия тем больше, чем выше напряжение сети.

Сети напряжением выше 1000 В с заземленными нейтралями и токами замыкания на землю более 500 А относятся к сетям с большими токами замыкания на землю. Сети с незаземленными нейтралями или с нейтралями, заземленными через токоограничивающие устройства с большими сопротивлениями, напряжением до 35 кВ и токами замыкания на землю до 500 А относятся к сетям с малыми токами замыкания на землю.

Можно выделить несколько последствий КЗ:

Наибольшая опасность при коротком замыкании угрожает элементам системы, прилегающим к месту его возникновения. В зависимости от места и продолжительности КЗ его последствия могут иметь местный характер (удаленное от источников питания КЗ) или отражаться на функционировании всей системы.

При анализе работы энергосистемы, а также при выборе электрооборудования необходимо учитывать следующие влияния токов КЗ на элементы системы.

1. Термическое действие , которое оценивается следующим выражением:

Термическое действие вызывает повреждение электрооборудования, связанное с его недопустимым нагревом токами КЗ.

2. Динамическое действие оценивается следующим условием:

Динамическое действие может вызывать механическое повреждение электро-

оборудования из-за воздействия больших электромагнитных сил между токоведущими частями. Последствия термического и динамического действия в большей степени угрожают элементам системы, прилегающим к месту возникновения КЗ.

3. Отрицательные влияния на линии других напряжений и на линии связи (проявляется при несимметрии). При этом при несимметричных КЗ наводятся ЭДС в соседних линиях связи и сигнализации, опасные для обслуживающего персонала и оборудования.

4. Ухудшение показателей качества электрической энергии, таких как отклонение напряжения, несинусоидальность кривой напряжения и тока, несимметрия трехфазной системы и т.д. При этом ухудшаются условия работы потребителей. При понижении напряжения, например, до 60–70 % от номинального в течение 1 с и более возможна остановка двигателей ответственных механизмов промышленных предприятий. Это, в свою очередь, может вызвать нарушение технологического процесса, приводящее к экономическому ущербу.

5. Потеря устойчивости системы (выпадение генераторов из синхронизма). Данный вопрос рассматривается в курсе «Устойчивость узлов нагрузки».

Потеря устойчивости может привести к системной аварии. Это наиболее опасное последствие коротких замыканий. Оно приводит к значительным технико-экономическим ущербам и нарушениям электроснабжения регионов.

Существуют определенные противоречия между некоторыми действиями токов КЗ, а именно: при ограничении величины токов КЗ падает запас статической и динамической устойчивости системы и ухудшаются условия пуска и самозапуска электродвигателей.

В связи со сложностью комплексного исследований переходных процессов принято их разделение по скорости протекания, что сформировало несколько дисциплин:

техника высоких напряжений (изоляция и защита от перенапряжений), изучающая быстро протекающие процессы (до 1 мс);


электромагнитные переходные процессы − предмет настоящего курса, изучающий процессы при синхронной скорости вращения электрических машин () (до 0,5с);

электромеханические переходные процессы (устойчивость узлов нагрузки) при одновременном учете электромагнитных и механических процессов
(0,1…10 с);

электрические системы и сети , изучающие стационарные режимы работы систем.

1.3. Задачи расчета электромагнитных переходных процессов

К основным задачам расчета электромагнитных переходных процессов относят следующие.

1. Выбор схемных решений.

Ярким примером тому являются исторические изменения схемы питания.

Рис. 1.1. Блочные схемы электроснабжения

При использовании блочных схем, представленных на рисунке 1.1, снижаются токи КЗ, поскольку увеличивается количество ступеней трансформации.

2. Выбор и проверка оборудования к термическому и динамическому действию тока КЗ. Например, нормирование параметров выключателя.

3. Выбор уставок устройств релейной защиты. При этом при расчете необходимо найти минимальные и максимальные значения токов КЗ в различных точках системы электроснабжения.

4. Выбор и проверка устройств системной автоматики.

5. Проверка условий работы оборудования в пусковых и аварийных режимах.

Расчеты токов КЗ необходимы для достижения следующих целей:

1) определения условий работы потребителей в аварийных режимах;

2) выбора аппаратов и проводников, их проверки по условиям электродина-

мической стойкости;

3) проектирования и настройки устройств релейной защиты и автоматики;

4) сопоставления, оценки и выбора схем электрических соединений;

5) определения влияния линий электропередачи на линии связи;

6) определения числа заземленных нейтралей и их размещения в ЭС;

7) выбора разрядников;

8) анализа аварий;

9) подготовки к проведению различных испытаний в ЭС.

Точность расчета КЗ зависит от его цели. В связи с этим вводятся понятия:

расчетные условия КЗ , т.е. наиболее тяжелые, но достаточно вероятные условия КЗ;

расчетная схема , как правило, включающая в себя все элементы электроустановки, через которые протекает ток в режиме КЗ;

расчетный вид короткого замыкания для определения максимальных и минимальных величин тока КЗ;

расчетная точка короткого замыкания, находящаяся непосредственно с одной или с другой стороны от рассматриваемого элемента электроустановки в зависимости от того, когда для него создаются наиболее тяжелые условия в режиме КЗ;

расчетная продолжительность короткого замыкания, понимаемая как сумма времен действия токовой защиты ближайшего к месту КЗ выключателя и полного времени отключения этого выключателя.

Так, при выборе и проверке электрических аппаратов не требуется высокая точность расчета, потому что параметры аппаратов ступенчато изменяются в случае перехода от одного их типа к другому. При выборе устройств релейной защиты и автоматики точность расчета должна быть значительно выше, необходимо определение максимальных и минимальных токов КЗ для момента отключения КЗ. Часто не рабочие режимы, а условия выбора и проверки оборудования и кабельных линий к действию токов КЗ являются определяющими.

1.4. Координация и оптимизация токов короткого замыкания

Сущность задач, решаемых в курсе «Электромагнитные переходные процессы», кроме непосредственного расчета уровней токов КЗ, заключается в нижеследующем.

1. Координация – согласование параметров оборудования с существующими уровнями токов КЗ электрических сетей при минимальных расчетных затратах и при соблюдении технических ограничений. Эта задача имеет место при расширении и реконструкции предприятий и электрических сетей со сложившимися исторически уровнями токов КЗ. При решении этой задачи необходима ориентация на новые типы оборудования.

2. Оптимизация – определение оптимальных с экономической точки зрения уровней токов КЗ электрических сетей при минимальных расчетных затратах и соблюдении технических ограничений. Такая задача возникает при проектировании новых предприятий и электрических систем. Поскольку наиболее дешевое оборудование ориентировано на уровни токов, не превышающие 20 кА, допущение иных уровней токов КЗ должно быть экономически обосновано.

Таким образом, как задача координации, так и задача оптимизации являются задачами технико-экономическими и требуют, кроме расчета уровней токов КЗ, сведения к минимуму затрат

где З – затраты на строительство и реконструкцию энергосистемы, определяются по следующему выражению:

где − доля ежегодных отчислений на капитальные вложения;

−капитальные вложения;

− эксплуатационные расходы, включающие стоимость потерь электрической энергии;

− ущерб от перерывов электроснабжения, вызванный различным уровнем надежности оборудования.

В связи с дискретным рядом параметров электротехнического оборудования решение этих задач сводится к технико-экономическому сравнению двух или нескольких вариантов.

При протекании по проводникам электрического тока проводники нагреваются. При нагреве проводника током нагрузки часть выделенной теплоты рассеивается в окружающую среду, причем степень рассеивания зависит от условий охлаждения.

При протекании тока КЗ температура проводников значительно возрастает, так как токи при КЗ резко увеличиваются, а длительность КЗ мала, поэтому теплота, выделяющаяся в проводнике, не успевает передаться в окружающую среду и практически все идет на нагрев проводника. Нагрев проводника при КЗ может достигать опасных значений, приводя к плавлению или обугливанию изоляции, к деформации и плавлению токоведущих частей и т.п.

Критерием термической стойкости проводников являются допустимые температуры нагрева их токами КЗ (х доп,°С).

Проводник или аппарат считается термически стойким, если его температура нагрева в процессе КЗ не превышает допустимых величин. Условие термической стойкости в общем случае выглядит так,°С:

х кон? х доп (4.1.)

где х кон - конечное значение температуры проводника в режиме КЗ.

Количественную оценку степени термического воздействия тока КЗ на проводники и электрические аппараты рекомендуется производить с помощью интеграла Джоуля

где i Kt - полный ток КЗ в произвольный момент времени t, А; t откл - расчетная продолжительность КЗ, с.

Интеграл Джоуля является сложной функцией, зависящей от параметров источников энергии, конфигурации исходной расчетной схемы, электрической удаленности места КЗ от источников и других факторов. Для ориентировочных расчетов интеграла Джоуля В к в цепях, имеющих значительную удаленность от источников питания, можно использовать формулу, кА 2 *с,

где - действующее значение периодической составляющей тока КЗ в момент t = 0 от эквивалентного источника, кА; - эквивалентная постоянная времени затухания апериодической составляющей тока КЗ, с; t откл - расчетная продолжительность КЗ, с.

Наиболее сложным является случай определения интеграла Джоуля при КЗ вблизи генераторов или синхронных компенсаторов. Но в учебном проектировании и здесь можно воспользоваться формулой (4.1.3.), так как полученное при этом значение В к будет несколько завышено, а проводники и аппараты, выбранные в мощных присоединениях (генератор, трансформатор связи и др.) по условиям длительного режима и электродинамической стойкости, имеют значительные запасы по термической стойкости. Исходя из вышеизложенных соображений, в формуле (4.1.3.) в качестве Т а.экв можно принять наибольшее из значений Т а тех источников, которые подпитывают место КЗ, если таковых имелось несколько, так как это ведет к увеличению расчетного интеграла Джоуля и не дает погрешности при проверке аппаратов на термическую стойкость.

При определении интеграла Джоуля необходимо достаточно точно определить t откл. Согласно ПУЭ расчетная продолжительность КЗ t откл складывается из времени действия основной релейной защиты данной цепи (t pз) с учетом действия АПВ и полного времени отключения выключателя (t откл.в), которое указывается в каталожных данных выключателей, с,

t откл = t pз + t откл.в (4.4.)

Для цепей генераторов с Р номG ? 60 МВт ПУЭ рекомендуется принимать t откл = 4 с, т.е. по времени действия резервной защиты.

Заводы-изготовители в каталогах приводят значения гарантированного среднеквадратичного тока термической стойкости (t тер, кА) и допустимого времени его протекания (t тер, с) для электрических аппаратов (выключателей, разъединителей, трансформаторов тока и др.).

В этом случае условие термической стойкости аппаратов в режиме КЗ выглядит так, кА 2 *с,

B к? t тер (4.5.)

При проверке термической стойкости проводника, имеющего стандартное сечение q станд, мм 2 , должно быть выполнено условие

q станд? q min (4.6.)

В ПУЭ оговорен ряд случаев, когда допустимо не проверять проводники и аппараты на термическую стойкость при КЗ. Это касается проводов воздушных ЛЭП, аппаратов и проводников цепей, защищенных плавкими предохранителями, и др.

I. Системы проводников при протекании по ним токов испытывают электродинамические взаимодействия, сопровождающиеся значительными механическими напряжениями. При одинаковом направлении тока проводники притягиваются, а если токи направлены в противоположные стороны, то отталкиваются.

Сила взаимодействия токов определяется по формулам, вытекающим из закона Био-Савара. Для двух параллельных проводников длиной l , расположенных на расстоянии а друг от друга, она может быть найдена из выражения

Если токи выражены в амперах, а сила F - в ньютонах, то коэффициент k равен 2×10 7 ; коэффициент k ф учитывает форму проводника и может быть принят равным 1 для проводников круглого сечения независимо от расстояния между ними и для проводников любой формы, если расстояние в свету между ними больше периметра поперечного сечения токоведущей части.

Сила F распределена равномерно по длине параллельных проводников. Удельное усилие на единицу длины проводника для условий равно:

Электродинамические взаимодействия в трехфазных установках переменного тока имеют ряд ocoбенностей. Усилия изменяются во времени по значению и направлению и имеют колебательный характер.

Сила, действующая на проводник с током, определяется как результат взаимодействия его с токами в проводниках двух других фаз, при том в наиболее тяжелых условиях оказывается проводник средней фазы. Наибольшее удельное усилие на проводник средней фазы может быть определено из выражения, Н/м,

где I m - амплитуда тока в фазе, А; а - расстояние между соседними фазами, м.

Взаимодействие проводников существенно возрастает в режиме КЗ, когда полный ток КЗ достигает своего наибольшего значения- ударного.

Для определения удельного усилия при трехфазном КЗ в системе проводников, пользуются выражением при условии , тогда

где - ударный ток трехфазного КЗ, А.

Выше рассматривались междуфазные усилия. Однако в реальных аппаратах и шинных конструкциях могут возникать довольно большие силы взаимодействия токов одной фазы. Это происходит при расщеплении фазы на ряд параллельных проводов, а также тогда, когда проводники не прямолинейны, а образуют петли, изгибаются под углом. Подобные силы имеют место в разъединителях, реакторах и других аппаратах.

Для предотвращения механических повреждении под действием усилий, возникающих в проводниках при протекании по ним токов КЗ, все элементы токоведущей конструкции должны обладать достаточной электродинамической стойкостью.

Под электродинамической стойкостью понимают обычно способность аппаратов или проводников выдерживать механические усилия, возникающие при протекании токов КЗ, без деформаций, препятствующих их дальнейшей нормальной работе.

Для электрических аппаратов завод-изготовитель указывает гарантийный ток КЗ, при котором обеспечивается электродинамическая стойкость. Чаще всего в каталогах на оборудование задается мгновенное значение тока электродинамической стойкости i дин (или i max ,или i пр.скв).При выборе аппаратов гарантированный заводом-изготовителем ток сравнивается с расчетным ударным током КЗ. Должно быть выполнено условие .

Электродинамическая стойкость жестких шин, за исключением комплектных токопроводов и шин КРУ, определяется расчетом механических напряжений в материале проводника при КЗ. Критерием стойкости служит выполнение условия , где и - соответственно допустимое и расчетное значения механических напряжении и материале проводника.

Согласно ПУЭ на электродинамическую стойкость не проверяют аппараты и проводники, защищенные предохранителями с плавкими вставками на ток до 60 A, a также аппараты и шины цепей трансформаторов напряжения при условии их расположения в отдельной камере.

Не рассчитывают механические напряжения от сил электродинамического взаимодействия в гибких проводах. Однако при ударных токах более 50 кА такие провода требуется проверять на схлестывание.

II. Известно, что системы проводников при протекании по ним токов испытывают электродинами­ческие взаимодействия, сопровождающиеся значительными механическими напряжениями.

При одинаковом направлении тока проводники притягиваются, а если токи направлены в противоположные стороны, то отталкиваются

Рис. 18.1. Электродинамическое взаимодействие между двумя токоведущими частями при согласном (а) и встречном (б) направлениях токов.

Сила взаимодействия токов определяется по формулам, вытекающим из закона Био-Савара. Для двух параллельных проводников длиной l, расположенных на расстоянии а друг от друга, она может быть найдена из выражения

Если токи выражены в амперах, а сила F - в ньютонах, то коэффи­циент k равен 2∙10 -7 ; коэффициент k ф учитывает форму провод­ника и может быть принят равным единице для проводников круглого сечения независимо от расстояния между ними и для проводников любой формы, если расстояние в свету между ними будет больше периметра поперечного сечения токоведущей части. В противном случае коэффициент k ф отличен от единицы и при вычислении усилий должен быть предварительно определен по специальным графикам.

Сила F распределена равномерно по длине параллельных проводни­ков. Удельное усилие на единицу длины проводника для условий рис. 18.1 равно:

. (18.2)

Электродинамические взаимодействия в трехфазных установках пере­менного тока имеют ряд особенностей. На рис. 18.2 изображены векторы усилий между проводниками отдельных фаз, расположенных в одной плоскости, в различные моменты времени на протяжении одного периода переменного тока. Усилия изменяются во времени по значению и направ­лению и имеют колебательный характер.

Сила, действующая на проводник с током, определяется как резуль­тат взаимодействия его с токами в проводниках двух других фаз, при этом в наиболее тяжелых условиях оказывается проводник средней фазы. Наибольшее удельное усилие на проводник средней фазы может быть определено из выражения, Н/м,

, (18.3)

где I m - амплитуда тока в фазе, А; а - расстояние между соседними фазами, м.

Коэффициент учитывает фазовые смещения токов в проводниках.

Рис. 18.2.Электродинамические взаи­модействия в трехфазной системе про­водников:

а-в - силы взаимодействия для разных моментов периода;

г - кривые изменения токов в фазах

Взаимодействие проводников существенно возрастает в режиме КЗ, когда полный ток КЗ, достигает своего наибольшего значения - ударного. При оценке взаимодействия фаз необходимо рассматривать двух­фазное и трехфазное КЗ.

Для определения удельного усилия при трехфазном КЗ в системе проводников, показанной на рис. 18.2, пользуются выражением (18.3) при условии тогда,

, (18.4)

где ί y (3) - ударный ток трехфазного КЗ, А.

В случае двухфазного КЗ влияние третьей (неповрежденной) фазы ничтожно мало, поэтому для определения удельного усилия используют выражение (18.2), принимая во внимание, что .Следова­тельно,


(18.5)

где ί y (2) - ударный ток двухфазного КЗ, А.

Рис. 18.3. Эпюры элект­родинамических взаимо­действий в пределах одной фазы масляного выклю­чателя


Учитывая, что , нетрудно по­казать, что междуфазное усилие при трех­фазном КЗ больше, чем при двухфазном. Поэтому расчетным видом КЗ при оценке электродинамических сил считают трехфазное.

Выше рассматривались междуфазные уси­лия. Однако в реальных аппаратах и шин­ных конструкциях могут возникать довольно большие силы взаимодействия токов одной фазы. Это происходит при расщеплении фазы на ряд параллельных проводов, а также тогда, когда проводники не прямолинейны, а обра­зуют петли, изгибаются под углом. На рис. 18.3 в качестве примера показана эпюра усилий, возникающих в пределах токоведущего контура фазы масляного выключателя.

Такие силы могут привести к самопроизволь­ному отключению выключателя, если не при­нять соответствующих мер. Так, например, при токе ί y = 50 кА на траверсу подвиж­ных контактов выключателя МКП-35 дей­ствует сила, равная примерно 2000Н. Подобные силы имеют место в разъединителях, реакторах и других аппаратах.

Для предотвращения механических повреждений под действием усилий, возникающих в проводниках при протекании по ним токов КЗ, все эле­менты токоведущей конструкции должны обладать достаточной электро­динамической стойкостью.

Под электродинамической стойкостью понимают обычно способность аппаратов или проводников выдерживать механические усилия, возникающие при протекании токов КЗ, без деформации, препятствующих их дальней­шей нормальной работе.

Для электрических аппаратов завод-изготовитель указывает гарантий­ный ток КЗ, при котором обеспечивается электродинамическая стой­кость. Чаще всего в каталогах на оборудование задается мгновенное значение тока электро- динамической стойкости ί дин, (или ί max , или ί пр.скв). При выборе аппаратов гарантированный заводом-изготовителем ток сравнивается с расчетным ударным током КЗ. Должно быть выполнено условие ί дин (max, пр.скв) ί y (3) .

Электродинамическая стойкость жестких шин, за исключением комп­лектных токопроводов и шин КРУ, определяется расчетом механических напряжений в материале проводника при КЗ. Критерием стойкости служит выполнение условия

σ доп σ расч,

где σ доп и σ расч - соответственно допустимое и расчетное значения меха­нических напряжений в материале проводника.

Согласно ПУЭ на электродинамическую стойкость не проверяют аппа­раты и проводники, защищенные предохранителями с плавкими вставками на ток до 60 А, а также аппараты и шины цепей трансформаторов напряжения при условии их расположения в отдельной камере.

Не рассчитывают механические напряжения от сил электродинамиче­ского взаимодействия в гибких проводах. Однако при ударных токах более 50 кА такие провода требуется проверять на схлестывание.

В ПУЭ оговорены также другие частные случаи, когда допустимо не проверять аппараты и проводники на электродинамическую стойкость при КЗ.